

Benefits

XENERGY®

Nanostructured Soft Magnetic Alloy for Wireless Data and Power Applications

As demand for faster, more efficient wireless charging grows, traditional materials often fall short. XENERGY is a cutting-edge, nanostructured nickel-iron-cobalt alloy that enhances the performance of wireless charging coils and other high-frequency applications. XENERGY's unique nanostructure is achieved through Xtalic's proprietary alloy design and pulse electrodeposition techniques. By applying a thin layer of XENERGY to fine-gauge copper wire, engineers can increase inductance, lower AC resistance and optimize the magnetic properties of inductive coils. This results in a notable boost in efficiency and performance, particularly in wireless charging applications where minimizing energy loss and heat is crucial.

Q as a function of frequency: 1m straight wire test format

-Q % increase (Alloy coated vs control)

Measured on $75\mu m$ wire, XENERGY delivers +20-200% increase in inductance, which leads to enhanced coil efficiency.

Increased Inductance	XENERGY demonstrated wire inductance boost of up to 200%, enabling faster, more efficient wireless charging
Improved Quality Factor	Achieved 50% greater Q in inductive coils, leading to faster charging times and reduced heat.
Reduced AC Resistance	Proven lower AC resistance by 50%, improving energy efficiency in high- frequency applications.
Thin, Stable Coating	With thicknesses ranging from 0.1 to 5 microns, XENERGY's coating adds minimal weight and size to your components, allowing for sleek, compact designs.
Broad Application Range	XENERGY is ideal for applications requiring high-performance soft magnetic materials, including wireless charging, medical devices, and high-frequency inductors.

Cross-section image of XENERGY coating showing the nanocrystalline structure.

Magnetic	 Permeability u>20 Tan d (loss) at frequency: low Inductance boost: up to 200%
Electrical	 DC resistivity ~ 20-500 μΩ cm (selectable) AC resistivity drop at high frequency
pical plating layer parameters	 Plating Temperature: 35-40 C Plating Line Speed: Proven to 120 m/min Current Density: 150-400 mA/cm2 pH: 2-3
Typical Coating	• Thickness 0.1 – 5 um

· Alloy composition: Ni-Fe-Co-X

Manufacturing Readiness

Our R&D labs in Marlborough, MA, have plating lines for sampling and small-batch production. sealed wire for customer use via our strategic partners. To date, over hundreds of thousands of km of XENERGY-coated wire has been produced. With flexible coating options—from reel-to-reel production to dielectric coating—XENERGY can be tailored to meet your product's specific needs.

Consumer Electronics

Boosts charging efficiency and reduces heat generation in smartphones and

Medical Devices

High-frequency Inductors

Applied in devices like NFC (Near Frequency) technology.

Tν